101 research outputs found

    The role of kinetics in the design of plasma microreactors

    Get PDF
    Miniaturization of plasma reactors has the potential of low power operation. In general, the electric field strength in the gap between two electrodes increases proportionate to inverse of the gap width, so that it is possible to overcome the first ionization potential of the gas with a low voltage. However, plasmas are extinguished primarily by recombination at the walls. Wall collisions are enhanced by the greater surface area to volume ratio in micro channels, which also increases proportionate to the inverse of the gap width. If the plasma were well mixed, then the plasma creation in the bulk would be balanced by extinction at the wall, providing no particular advantage with regard to low voltage/low power operation. However, the plasma is transferred from the bulk to the wall by ambipolar diffusion. If the operation of the plasma microreactor is essentially transient or batch, whether or not the reaction kinetics are comparable to or faster than ambipolar diffusion determines if there is a regime of operation in which a low voltage plasma discharge can generate a high yield of product. In this paper, this question is investigated with regards to the ozone formation reaction and a particular design of a micro channel plasma reactor, with parameters so chosen to arguably achieve low voltage operation. The focus of this paper is the simulation of the kinetics of the plasma reactions leading to ozone formation, which shows a time to completion that is comparable (10(-2) s) or faster than the estimate of ambipolar diffusion time at these length scales. Preliminary results of a microchip reactor are consistent with this prediction. (C) 2010 Elsevier Ltd. All rights reserved

    No-moving-part hybrid-synthetic jet actuator

    Get PDF
    In contrast to usual synthetic jets, the “hybrid-synthetic jets” of non-zero timemean nozzle mass flow rate are increasingly often considered for control of flow separation and/or transition to turbulence as well as heat and mass transfer. The paper describes tests of a scaled-up laboratory model of a new actuator version, generating the hybrid-synthetic jets without any moving components. Self-excited flow oscillation is produced by aerodynamic instability in fixed-wall cavities. The return flow in the exit nozzles is generated by jet-pumping effect. Elimination of the delicate and easily damaged moving parts in the actuator simplifies its manufacture and assembly. Operating frequency is adjusted by the length of feedback loop path. Laboratory investigations concentrated on the propagation processes taking place in the loop

    Optimal modelling and experimentation for the improved sustainability of microfluidic chemical technology design

    Get PDF
    Optimization of the dynamics and control of chemical processes holds the promise of improved sustainability for chemical technology by minimizing resource wastage. Anecdotally, chemical plant may be substantially over designed, say by 35-50%, due to designers taking account of uncertainties by providing greater flexibility. Once the plant is commissioned, techniques of nonlinear dynamics analysis can be used by process systems engineers to recoup some of this overdesign by optimization of the plant operation through tighter control. At the design stage, coupling the experimentation with data assimilation into the model, whilst using the partially informed, semi-empirical model to predict from parametric sensitivity studies which experiments to run should optimally improve the model. This approach has been demonstrated for optimal experimentation, but limited to a differential algebraic model of the process. Typically, such models for online monitoring have been limited to low dimensions. Recently it has been demonstrated that inverse methods such as data assimilation can be applied to PDE systems with algebraic constraints, a substantially more complicated parameter estimation using finite element multiphysics modelling. Parametric sensitivity can be used from such semi-empirical models to predict the optimum placement of sensors to be used to collect data that optimally informs the model for a microfluidic sensor system. This coupled optimum modelling and experiment procedure is ambitious in the scale of the modelling problem, as well as in the scale of the application - a microfluidic device. In general, microfluidic devices are sufficiently easy to fabricate, control, and monitor that they form an ideal platform for developing high dimensional spatio-temporal models for simultaneously coupling with experimentation. As chemical microreactors already promise low raw materials wastage through tight control of reagent contacting, improved design techniques should be able to augment optimal control systems to achieve very low resource wastage. In this paper, we discuss how the paradigm for optimal modelling and experimentation should be developed and foreshadow the exploitation of this methodology for the development of chemical microreactors and microfluidic sensors for online monitoring of chemical processes. Improvement in both of these areas bodes to improve the sustainability of chemical processes through innovative technology. (C) 2008 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved

    Dual-plane PIV investigation of acoustically excited jets in a swirl nozzle

    Get PDF
    Abstract. A novel dual-plane dye laser particle image velocimetry (PIV) technique used to analyze helicity and energy dissipation in an unexcited turbulent swirling jet of pressurized cold air has established that regions within the flow field of the jet exhibiting high helicity are correlated regions of high turbulent kinetic energy dissipation. This PIV con- figuration provides estimates of all components of the velocity gradient tensor, facilitating calculation of the helicity from the vorticity components. Application of this novel dual-plane PIV technique is extended in this study to investigate helical structures in a turbulent swirling jet where the underlying shear flow is subjected to external acoustic sinusoidal forcing in a plane perpendicular to the central axis of the jet. It was found that acoustic excitation had a significant effect on the mean velocity profile parallel to the direction of the jet. The horizontal forcing resulted in the generation of vorticity that was skewed with a pitch that favored a distribution of angles around 90â—¦ with respect to the velocity vector. The distribution of the time-averaged helicity angle indicated organized helical activity, but such activity is not dominated by large-scale coherent structures of maximal helicit

    Towards a microbubble condenser: Dispersed microbubble mediation of additional heat transfer in aqueous solutions due to phase change dynamics in airlift vessels

    Get PDF
    Microbubbles dispersions in aqueous solutions can be long lived. For instance, 20micron size microbubbles take on the order of a day to rise one meter. Consequently, any currents in a reasonably sized vessel would be expected to entrain such a microbubble dispersion as the buoyant force is exceeded by the inertial force of liquid currents. This paper argues for the advantages of a microbubble dispersion mediated condenser with two benefits. The obvious advantage over fine bubble direct contact heating or cooling is that the microbubble phase, which can be engineered with a throughput of approximately a hectare per second of interfacial area flux per cubic meter of solution volume, should not be limited by heat transfer to and from the liquid and microbubble phase. Rather the limitation will be on the wetted area for heat transfer of the vessel to its heat exchange configuration. The second potential advantage follows from the theory proposed in this paper. Arranging the condenser in the microbubble mediated airlift configuration will introduce additional heat transfer from microbubbles vaporizing hotter water near the central plume and convecting that additional latent heat to the cold wall, which condenses the water vapor and releases the latent heat. This additional convection of latent heat is proposed as an additional source term for heat transport equation, and the magnitude of the effect is shown to be proportional to the phase fraction of microbubbles. This theory is shown to be consistent with analysis of observations of freezing times measured by Mpemba and Osborne [Phys. Educ. 4:172-5, 1969], that infer heat transfer coefficients from fitting Newton’s law of cooling. The inferred heat transfer coefficient ratio from the presumed highest microbubble phase fraction to the lowest is ~7.4:1. Whether or not that enhancement level persists to a microbubble condenser in an airlift vessel, the promise of additional heat transfer should be explored

    Laboratory preparation of simulated sludge for anaerobic digestion experimentation

    Get PDF
    Health and environmental factors as well as operational difficulties are major challenges facing the development of an anaerobic digestion process. Some of these problems relate to the use of sludge collected from primary and secondary clarifier units in wastewater treatment plants for laboratory purposes. The present study addresses the preparation of sludge for laboratory purposes by using a mixture that consists of the digested sludge, which is less pathogenic, compared to the collected sludge from the primary or secondary clarifier, and food wastes. The sludge has been tested experimentally for 19 and 32 days under mesophilic conditions. The results show a steady methane production rate from the anaerobic digester which used sludge with a rate of 1.5 l/day and concentration around 60%, with comparatively low H2S gas content (10 ppm). The methane produced from the digester that used only digested sludge decreases during the experimental period

    Microbubble Distillation for Ethanol-Water Separation

    Get PDF
    In the current study, a novel approach for separating ethanol-water mixture by microbubble distillation technology was investigated. Traditional distillation processes require large amounts of energy to raise the liquid to its boiling point to effect removal of volatile components. The concept of microbubble distillation by comparison is to heat the gas phase rather than the liquid phase to achieve separation. The removal of ethanol from the thermally sensitive fermentation broths was taken as a case of study. Consequently the results were then compared with those which could be obtained under equilibrium conditions expected in an “ideal” distillation unit. Microbubble distillation has achieved vapour compositions higher than that which could be obtained under traditional equilibrium conditions. The separation was achieved at liquid temperature significantly less than the boiling point of the mixture. In addition, it was observed that the separation efficiency of the microbubble distillation could be increased by raising the injected air temperature, while the temperature of the liquid mixture increased only moderately. The separation efficiency of microbubble distillation was compared with that of pervaporation for the recovery of bioethanol from the thermally sensitive fermentation broths. The technology could be controlled to give high separation and energy efficiency. This could contribute to improving commercial viability of biofuel production and other coproducts of biorefinery processing

    Growth Enhancement of Dunaliella salina by Microbubble Induced Airlift Loop Bioreactor (ALB)—The Relation between Mass Transfer and Growth Rate

    Get PDF
    The efficiency of a novel microalgal culture system (an airlift loop bioreactor [ALB] engaged with a fluidic oscillator to produce microbubbles) is compared with both a conventional ALB (producing fine bubbles without the fluidic oscillator) and non-aerated flask culture. The impact of CO2 mass transfer on Dunaliella salina growth is assessed, through varying the gas (5% CO2, 95% N2) dosing flow rate. The results showed that approximately 6 - 8 times higher chlorophyll content was achieved in the aerated ALB cultures than in the non-aerated flasks, and there was a 20% - 40% increase in specific growth rate of D. salina in the novel ALB with microbubbles when compared with the conventional ALB cultures. The increase in chlorophyll content was found to be proportional to the total amount of CO2 mass transfer. For the same dosing time and flow rate, higher CO2 mass transfer rate (microbubble dosing) resulted in a greater growth rate

    Purification of Bioethanol Using Microbubbles Generated by Fluidic Oscillation: A Dynamical Evaporation Model

    Get PDF
    (Graph Presented) A computational model of a single gas microbubble immersed in a liquid of ethanol-water mixture is developed and solved numerically. This complements earlier binary distillation experiments in which the ethanol-water mixture is stripped by hot air microbubbles achieving around 98% vol. ethanol from the azeotropic mixture. The proposed model has been developed using Galerkin finite element methods to predict the temperature and vapor content of the gas microbubble as a function of its residence time in the liquid phase. This model incorporates a novel rate law that evolves on a time scale related to the internal mixing of microbubbles of 10-3s. The model predictions of a single bubble were shown to be in very good agreement with the existing experimental data, demonstrating that the ratio of ethanol to water in the microbubble regime are higher than the expected ratios that would be consistent with equilibrium theory for all initial bubble temperatures and all liquid ethanol mole fractions considered and within the very short contact times appropriate for thin liquid layers. Our previous experiments showed a decrease in the liquid temperature with decreasing liquid depth in the bubble tank, an increase in the outlet gas temperature with decreasing liquid depth, and an improvement in the stripping efficiency of ethanol upon decreasing the depth of the liquid mixture and increasing the temperature of the air microbubbles, all of which are consistent with the predictions of the computational model

    Esterification for biodiesel production with a phantom catalyst: Bubble mediated reactive distillation

    Get PDF
    The initial aim of the paper is to dramatically improve the pretreatment stage of biodiesel production, which converts problematic free fatty acids to fatty acid methyl esters, by introduction of a microbubble mediated reactive distillation stage instead of acid pretreatment. This will shift the conventional esterification process towards completion with a yield higher than 80%, even without high excess methanol. Application of ozone microbubbles has the advantage over acid gas catalysis in that it gives higher conversion and leaves no catalyst residue and requires no further catalyst recovery separation steps (a “phantom” catalyst). Unreacted ozone breaks down into oxygen, so the off-gases are just a humid air stream that can be vented. Importantly, ozonolysis breaks carbon–carbon double bonds into aldehydes and carboxylic acids. Many ester species were found after contacting the feedstock with ozone-rich microbubbles, depending on the molecular structure of the alcohols for the ozonolysis of oleic acid with alcohols, i.e., methanol, ethanol, n-propanol, iso-propanol, and n-butanol. In the case of ozonolysis of used cooking oil mixed with methanol, the results from the GC–MS show that all saturated free fatty acids (including palmitic acid, stearic acid, and myristic acid) are converted to methyl esters within 20 h of 60 °C ozonolysis, whereas trace amounts of these chemicals remain at lower temperatures. The results also show that the conversion of oleic acid to form oleic acid methyl ester is 91.16% after 32 h of ozonolysis at 60 °C. Therefore, the free fatty acid content in used cooking oil is less than 1.33%, which makes it suitable as a reactant for biodiesel production via transesterification. However, this result is different from the result provided by ASTM D974 in that the acid numbers decrease dramatically by 25% at the beginning of ozonolysis followed by a plateau. Moreover, if the fluidic oscillator is used to generate bubbles in ozonolysis of oleic acid mixed with methanol, the results show that the yields of ozonolysis product 1-nonanal increase by 30%. This observation means that ozonolysis of oleic acid is relative to the specific interfacial area, and favoured at low liquid temperatures
    • …
    corecore